
Report N o . 81-6
J a n u a r y 27, 1981

ICASE
A SHORTEST TREE ALGORITHM FOR OPTIMAL ASSIGNMENTS

ACROSS SPACE AND TIME I N A DISTRIBUTED PROCESSOR SYSTEM

Shahid H . Bokhari

I N S T I T U T E FOR COMPUTER APPLICATIONS I N SCIENCE AND ENGINEERING

NASA Langley R e s e a r c h C e n t e r , H a r n p t o n , V i rgi n i a

O p e r a t e d by t he

n
U N I V E R S I T I E S SPACE YsR& RESEARCH A S S U C I A T I O N

(NASA-CR-185766) A SHORTEST TREE ALGORITHM N89- 7 L 344 FOR O P T I M A L ASSIGNNENTS ACROSS SPACE AN0
T I M E I N A OISTRIBUlED PROCESSOR SYSTEM

(I C A S E) 24 p Unclas
00/61 0224395

A SHORTEST TREE ALGORITHBI FOR OPTIMAL ASSIGNMENTS

ACROSS SPACE AND TIME I N A DISTRIBUTED PROCESSOR SYSTEX

Shah id H. Bokhari
Unive.h.4L.t~ 06 Enginedng and Technology

Lahow, P a b a k n

ABSTRACT

The problem of o p t i m a l l y a s s i g n i n g t h e modules of a pro-
gram o v e r t h e p r o c e s s o r s o f an inhomogeneous d i s t r i b u t e d pro-
c e s s o r sys tem is a n a l y z e d . The o b j e c t i v e i s t o a s s i g n modules ,
wherever p o s s i b l e , t o t h e processors on which t h e y e x e c u t e most
r a p i d l y w h i l e t a k i n g i n t o account t h e ove rhead of i n t e r p r o c e s s o r
communicat ion. F a c t o r s c o n t r i b u t i n g t o t h e cost of an a s s i g n -
ment are (1) t h e amount of computa t ion r e q u i r e d by each module,

(2) t h e amount of d a t a t r a n s m i t t e d between e a c h p a i r of modules ,
(3) t h e speed of e a c h p r o c e s s o r and (4) t h e s p e e d of t h e communi-
c a t i o n l i n k between each p a i r of p r o c e s s o r s .

A s h o r t e s t t ree a l g o r i t h m is d e s c r i b e d t h a t min imizes t h e
sum of e x e c u t i o n and communication costs f o r a r b i t r a r i l y connec-
t e d d i s t r i b u t e d sys t ems w i t h a r b i t r a r y numbers of p r o c e s s o r s ,

p r o v i d e d t h e i n t e r c o n n e c t i o n p a t t e r n of t h e modules forms a tree.
The algorithm u s e s a dynamic programming approach t o s o l v e t h e
problem f o r m modules and n p r o c e s s o r s i n O(m 2 2 n) t i m e .

--

T h i s work was s u p p o r t e d by NSF Grant MCS-76-11650 w h i l e t h e
a u t h o r w a s a t t h e Department of Electrical and Computer E n g i n e e r i n g ,
U n i v e r s i t y of M a s s a c h u s e t t s , Amherst, and by NASA Contac t N o .
NAS1-14101 w h i l e t h e a u t h o r w a s i n r e s i d e n c e a t t h e I n s t i t u t e
f o r Computer A p p l i c a t i o n s i n S c i e n c e and E n g i n e e r i n g (ICASE),
N A S A Langley Research C e n t e r , Hampton, VA 23665.

1

1. Introduction

Over the past few years interest in distributed

processing has led to the identification of several challenging

problems. One of these is the problem of: optimally assigning the

modules of a modular program over the processors of an inhomogeneous

distributed processor systenl. Factors contributing t o t h e cost

of an assignment are (1) the amount of computation required by each

module,

modules, (3) the speed of each processor and (4) the speed of the

communication link between each pair of processors.

(2) the amount of data transmitted between each pair of

Research by Stone (77a), (78) and Bokhari (791, (80)

has shown how the optimal assignment may be found efficiently for the

case of dual processor systems using a network flow algorithm.

While an extension to three processors was developed by Stone (77b),

algorithms for four or more processors have not been found.

Gursky (78) has shown that the problem of finding the optimal

assignment for four or more processors is NP-complete.

In section 2 of this paper we show that if the

intermodule communication pattern of the program is constrained to

be a tree, then the problem may be solved for an arbitrary number

of processors using an efficient dynamic programming approach.

Programs that have a tree-like structure form an important class

and include programs written as a hierarchy of subroutines.

Turner (80) has discussed how a tree-like structure is best suited

for large modular programs. I

The algorithm takes into account the interconnection

striicture of the distributed system (i.e. the speeds of links

between pairs of processors) a consideration that does not arise

2

in the dual processor case.

The algorithm minimizes the sum of module execution

and interprocessor communication costs. The two costs must be

expressed in the same units which could be time or dollars or

other resource units. If the costs are expressed in dollars then

the algorithm will minimize the total financial cost of executing

the program. If expressed in terms of module execution and

interprocessor communication time it will minimize the total

execution time assuming serial execution of the program. That

is, even though there are several modules and processors, only

one module is active on one processor at a time. This is the case

in many distributed processing application including the distributed

processor at Brown University (Michel & van Dam,76), (Van Dam

et a1.,74) which has served as a model for prior research by

Stone and Bokhari.

In Section 3 of this paper we show how the dynamic

programming approach may also be used to optimally schedule a number

of tasks whose precedence relationship forms a tree over a set

of processors whose costs of execution and intercommunication

vary with time. The motivation in this case is to distribute

the tasks over the processors, delaying their execution wherever

deadlines permit so as to take advantage of periods of light

loading of specific processors and communication links.

In this case the algorithm may be used to minimize

the sum of execution costs (processor and time dependent),

communication costs (dependent on the characteristics of specific

links and on time) and the penalties for not meeting deadlines

(if any).

3

4

2 . Distributing Across Space

In this section we examine the problem of

optimally distributing a modular program over the processors of

a distributed processing system. We call this the problem of

distributing across space (i.e. the space of processors).

2.1 Formulation of the problem

Our distributed processor system is assumed to be

made up of an arbitrary number fi of dissimilar processors.

processors are assumed to be interconnected in an arbitary fashion,

with arbitrary link speeds.

These

The program to be distributed across the processors is

considered to be made up of a number of modules. A module is

considered to be a portion of a program that can, in general,

execute on any processor and could, for example, be a subroutine

or coroutine. There are assumed to be m-modules in the distributed

program.

For each module we have the cost of executing it

on each of the n-processors. The cost of executing module i on

processor j is denoted eij and equals the sum of the costs of

the various periods of execution of the module throughout the

lifetime of the program (since, for example, a subroutine is

typically executed several times during a program run).

The eij's for an 1 module p processor problem

from an FXE matrix.

of executing a module varies from processor to processor, that is -
Since the processors are dissimilar, the cost

eij # eik, in general.

on a subset of available processors (perhaps o:: only one processor)

A module may be constrained to reside

by making its execution costs on the complementary subset infinite.

4

Modules will transfer control to each other at various points

during the lifetime of the program.

graph in which each node represents a module and in which there

is an edge from node i to node j if and only if module i calls

module j during program execution, this would be a calls graph.

The algorithm for optimal assignments that will be presented in

this section assumes that the calls graph of the program is a

tree. We will call this an invocation tree because it describes

the way modules invoke other modules during the execution of the

program.

If we draw up a directed

Fig. 1,shows an invocation tree made up of 8 modules.

Should a module invoke another module that is not

coresident with it, this invocation would have to be transmitted

over a communication link and thus incur interprocessor

communication cost. This is dependent on the amount of data

transmitted from one module to the other and the cost per bit

of transmission between the two processors on which the modules

are resident.

We will denote by dij the total amount of data

transmitted between the calling module i and the called module

j during the lifetime of the program.

an amount of data dij between processors p and q is given by a

function S (d.,). In its simplest form this function is
_ W 1 3

S (d..) = s .dij where s

amount of data between processors p and q.

The cost of transmitting

is the cost of transmitting a unit
P9 w 1 3 P9

We assume the communication cost function to be

symmetric, i.e. S = s This assumption permits us to

associate the sum of all data flow between moduLes i and j

(whether from i to j or j to i) with the direction i to j. Although

Pq qp"

I

t

4,

J

Fig. 1 An Invocation Tree

5

sqP' we see no motivation for considering the case S

the algorithm described below can easily be modified to handle

this case (for which separate dij' s and dji s will be required.)

P9

8

The cost of invoking a coresident module is assumed

to be zero, i.e. S =O. Should this assumption not be valid,

it too can be relaxed to account €or non-negligible

intraprocessor communication costs.

PP

The graph corresponding to the matrix of d ' s ij
represents the invocation tree of a modular program.

2 . 2 . Minimum cost assignment across space

We now show how the minimum cost assignment for our

modular program may be found. Such an assignment minimizes

the sum of execution costs and interprocessor communication

costs.

Given the invocation tree of a modular program, and

the execution and interprocessor communication costs, we may

draw up an assignment graph. Fig.2 shows the assignment

graph for the invocation tree of Fig.1 and a 3-processor system.

The following definitions apply to this assignment

graph.

1) The assignment graph is a directed graph with weighted edges.

2) There is one distinguished node called the source node,
denoted s.

3) There are Several terminal nodes tl
leaf node of the invocation tree.

t2: ..., one €or each

4) n In addition to the source and terminal nodes there are
m x p further nodes in the assignment graph (for a problem
involving 2 modules and n processors). Each node is
labelled with a pair of numbers (i,j) and represents the
assignment of module i to processor j.

I

I

t

6

5) Each l a y e r o f t h e ass ignment g r a p h c o r r e s p o n d s t o a
node of t h e i n v o c a t i o n tree. For example t h e l a y e r
compr i s ing nodes (2 , 1) , (2 , 2) and (2 ,3) c o r r e s p o n d s t o
node 2 of t h e i n v o c a t i o n tree.

6) Nodes i n l a y e r s co r re spond ing t o nodes i n t h e i n v o c a t i o n
tree h a v i n g o u t d e g r e e g r e a t e r t h a n 1 are c a l l e d fo rknodes .
Each l a y e r o f forknodes i s c a l l e d a f o r k s e t .

The e d g e s have w e i g h t s on them a c c o r i n g t o t h e

f o l l o w i n g r u l e s

7) A l l e d g e s i n c i d e n t on t h e t e r m i n a l nodes t l , t2 e t c have
z e r o w e i g h t on them.

8) Edges j o i n i n g sourcenode S t o nodes (1,l) I (1 , 2) . .. have

1 2 ' " ' w e i g h t s e l l , e

e +S (d . .) . For example, t h e w e i g h t on t h e edge j o i n i n g
node (1 , 3) t o (2,l) i s e21+S13 (d 1 2) . T h i s e q u a l s t h e cost
of ass i s r? i r?q module 2 kn processor 1, g iven t h a t module 1 h a s
been a s s i g n e d t o p rocesso r 3.

9) The edge j o i n i n g node (i , p) t o node (j , q) has w e i g h t

jq pq 11

I t f o l l o w s from p r o p e r t y 3 above t h a t t o e a c h

a s s ignmen t of t h e m modules t o t h e n p r o c e s s o r s t h e r e c o r r e s p o n d s

some s u b s e t o f nodes of t h e a s s ignmen t g raph . The subgraph

g e n e r a t e d by t h e s e nodes p l u s t h e s o u r c e and t e r m i n a l nodes

i s c a l l e d an ass ignment t ree and h a s t h e f o l l o w i n g p r o p e r t i e s .

1) I t i s a tree

2) I t c o n n e c t s t h e sou rce node s t o a l l t e r m i n a l nodes
tl' t 2 1 " .

3) I t c o n t a i n s one and o n l y one node from e a c h l a y e r o f
t h e a s s i g n m e n t graph.

The re i s a one t o one co r re spondence between a s s ignmen t

trees and module ass ignments . Fu r the rmore t h e we igh t o f e a c h

a s s ignmen t t ree (i .e . t h e sum o f t h e w e i g h t s o f a l l e d g e s

i n it) e q u a l s t h e cost of t h e c o r r e s p o n d i n g a s s ignmen t . T h i s

f o l l o w s from p r o p e r t y 9 of a s s ignmen t g r a p h s . The t h i c k edge

i n F ig .2 r e p r e s e n t a n ass ignment t ree which i s shown i n

i s o l a t i o n i n F ig .3 .

Fig. 2 An Assignment Graph for the invocation tree of Fig. 1 and a
3-processor System.

4.

1 Fig. 3 The Assignment Tree from Fig. 2
shown in isolation with edges
labe 1 led.

7

TO f i n d a minimum c o s t a s s ignmen t w e need t o f i n d

t h e minimum we igh t a s s ignmen t t ree i n t h e a s s ignmen t g r a p h . T h i s

may be done u s i n g t h e dynamic programming approach d e s c r i b e d

i n t h e Appendix i n 0 (m n) t i m e .

3 . D i s t r i b u t i o n across s p a c e and t i m e

3.1 M o t i v a t i o n s

2 2

I n t h i s s e c t i o n w e d i s c u s s how a s e t o f t a s k s t h a t

must be e x e c u t e d a c c o r d i n g t o a t r e e - l i k e p recedence r e l a t i o n s h i p

may be o p t i m a l l y schedu led o v e r a d i s t r i b u t e d p r o c e s s o r sys t em

i n which c o s t s v a r y w i t h t i m e .

The c o m p u t a t i o n a l r e s o u r c e s of many o r g a n i z a t i o n s

a re i n t h e form o f a d i s t r i b u t e d computer ne twork w i t h e a c h

computer s e r v i c i n g one or more h i g h p r i o r i t y loca l t a s k s and

r e t a i n i n g t h e c a p a b i l i t y of s e r v i c i n g r emote ly submi t t ed t a s k s

a t a l o w p r i o r i f i y . I n a p r o d u c t i o n env i ronmen t , t h e l o a d s on

t h e computers are f a i r l y p r e d i c t a b l e a s t h e y depend h e a v i l y on

t h e s p e c i f i c loca l loads on t h e machines .

I n such an envi ronment w e would be i n t e r e s t e d i n

d i s t r i b u t i n g a l a r g e set o f t a s k s o v e r t h e sys t em s u c h t h a t it

u t i l i z e s wha teve r processors are l i p h t l y l o a d e d .

loads on t h e processors are t i m e dependen t , w e may wish t o

c o n s i d e r suspend ing some t a s k s u n t i l a t i m e when t h e load on a

p a r t i c u l a r processor i s v e r y l i g h t . O f c o u r s e , some t a s k s may

Since t h e

be t i m e c r i t i c a l and n o t admi t any s u c h s u s p e n s i o n . Our

problem t h u s becomes one of d i s t r i b u t i n g a set of t a s k s over a

set of processors, t a k i n g i n t o a c c o u n t t h e r u n cost of e a c h

t a s k on e a c h processor (which w i l l , i n g e n e r a l , be t ime-dependen t) ,

t h e in te rcommunica t ion costs between p a i r s o f t a s k s (which

8

will depend on the pairs of processors on which the two tasks are

executed and may also be time dependent) and the penalties for

not meeting deadlines for t a k s (which may be set t o infinity if a

task must be executed by a certain time).

As a concrete example of a situation where such

scheduling may be useful, consider the setting up of an appointment

€or a student to see a specific doctor at a Univ'ersity Infirmary.

This task is to be run at the University's central administrative

computing center (which is made up of one or more time-shared

machines). The task involves the updating of a specific doctor's

appointment file, the scheduling of an examination room, mailing

I a reminder to t h o ~ L , : J A P ~ ~ ; : i ? d a + j z ~ t h e studer?t's acccunt f i l e etc.

Some tasks (e.9. updating the doctor's appointment file) must be

done immediately, n-h i l e others (updating the student's account)

may be deferred until a later time.

In an airlines reservation computer system, the prime

objective is to provide fast reliable service to the numerous

ticketing terminals. However there is no reason why such a

system cannot be used for other functions as well. Tasks other

than ticketing need to be scheduled over this system so as to

minimally impact the efficiency of ticketing by deferring as

much as possible such t a s k s t o o f f peak load hours.

Another example is where a long engineering computation

(comprising several steps to be executed in a sequence) is to be

carried out at a large computation laboratory with several

computers, some of which are used for real time simulation

during the day. An engineer carrying out such a calculation

will often do the initial data preparation during the day and

9

t h e n suspend h i s t a s k u n t i l n i g h t t i m e when it may be r u n a t

v e r y l o w cos t on a l i g h t l y l o a d e d machine. The f i n a l i n t e r a c t i v e

examina t ion o f t h e r e s u l t s i s done on t h e f o l l o w i n g day .

The complex o f compute r s a t NASA Langley Resea rch

C e n t e r i s a n example of t h i s k i n d of env i ronmen t . The re are a t

t h i s c e n t e r several CDC Cyber machines w i t h v a r y i n g c o m p u t a t i o n a l

power b u t c a p a b l e o f e x e c u t i n g e s s e n t i a l l y t h e s a m e i n s t r u c t i o n

set. Some p o w e r f u l machines are c o m p l e t e l y d e d i c a t e d t o rea l t i m e

s i m u l a t i o n d u r i n g t h e day b u t may be used a t lower c o s t d u r i n g

t h e e v e n i n g s and a t n i g h t .

3.2 Formula t ion of t h e problem.

We assume t h e r e t o be 2 p r o c e s s o r s i n o u r d i s t r i b u t e d

system. The costs o f e x e c u t i n g t a s k s on p r o c e s s o r s v a r y w i t h

t i m e b u t remain c o n s t a n t o v e r s p e c i f i e d p e r i o d s o f t i m e c a l l e d

p h a s e s . T h i s is i l l u s t r a t e d i n F i g . 4 where t h e v e r t i c a l a x i s

r e p r e s e n t s t h e s p a c e of p r o c e s s o r and t h e h o r i z o n t a l a x i s

r e p r e s e n t s t i m e . During some p h a s e s a p r o c e s s o r may be t o t a l l y

u n a v a i l a b l e because o f complete d e d i c a t i o n t o a real-time t a s k

or pe rhaps because o f s c h e d u l e d ma in tenance .

Once a t a s k s t a r t s e x e c u t i n g d u r i n g a p a r t i c u l a r p h a s e ,

it i s a l l o w e d t o r u n t o comple t ion even i f t h e p h a s e e n d s d u r i n g

t a s k e x e c u t i o n . T h e t i m e t o e x e c u t e a t a s k i s c o n s i d e r e d t o be

s m a l l compared t o t h e l e n g t h o f a phase . A t a s k t h a t i s

i n i t i a t e d n e a r t h e end of a p h a s e i s t r e a t e d l i k e a customer

who arrives a t a bank j u s t b e f o r e c l o s i n g time--he i s a l l o w e d

t o complete h i s t r a n s a c t i o n even though c l o s i n g t i m e i s p a s t .

I

C’

The g r a p h superimposed on F ig .4 shows one possible

way of s c h e d u l i n g a p recedence tree of t a s k s o v e r t h e t w o

P
K

ln
W
0
0
a

SI

a

r .- __ -
I

I

W J

m
f
2
U z
3

I :*
i \. I

I i yq
I \ I
1 !

CD m

-1

F

K
0
v)
v)
W
V
0
K a

W

I-
5

m

W ln
I
a
a

-a
W
v)
U
f: a

(3

u 2
a

tu
W
v)

IL
2

c
W
ln

9 a

a, u
a a
rJl

al
al
&
i3

P
-4
E

E

V

Fig. 5 A precedence tree and its scheduling graph
for a two processor two phase problem.

1 0

d imens ions o f s p a c e (p r o c e s s o r s) and t i m e (P h a s e s) .

I n t h e u s u a l f a s h i o n , e a c h node of t h e p r e c e d e n c e

tree r e p r e s e n t s a t a s k and a directed edge from node i t o node j

i m p l i e s t h a t t a s k i m u s t be comple ted b e f o r e t a s k j i s s t a r t e d .

With e a c h node i is a s s o c i a t e d ei jk, t h e cos t of *--

e x e c u t i n g t a s k i on p r o c e s s o r j d u r i n g phase k . T h i s cost w i l l ,

i n g e n e r a l v a r y a c r o s s t h e processors and phases . I t may be set

t o i n f i n i t y f o r some p r o c e s s o r s d u r i n g c e r t a i n p h a s e s i f t h e s e

p r o c e s s o r s a r e n o t a v a i l a b l e d u r i n g t h e s e s p e c i f i c p h a s e s .

A l s o a s s o c i a t e d wi th e a c h node i i s Eik t h e p e n a l t y

T h i s p e n a l t y Fik
I

€or n o t c o m p l e t i n g t a s k i by t h e end of phase k.

may be se t t o i n f i n i t y i f t h e t a s k must f i n i s h by phase k .

With t h e edge connec t ing nodes i & j i n t h e p r e c e d e n c e

tree, w e have d i j - t h e amount o f d a t a t h a t m u s t be t r a n s m i t t e d

between t a s k s when invok ing t a s k j a t t h e end o f t a s k i . The

overhead of i n v o k i n g t a s k j i n phase 6 on p r o c e s s o r p a f t e r

comple t ing t a s k i i n phase 6 on p r o c e s s o r p i s a f u n c t i o n

T (d i j , px, p ,dv, dw) .

amount o f d a t a t r a n s m i t t e d (ii) t h e c o s t p e r b i t o f t h e l i n k between

p, and py and (i i i l t h e overhead of suspending a t a s k when i t

f i n i s h e s i n 4, and resumes i n 4,.

i s t h e cost of i g n o r e s (iii) above is T=S

t r a n s m i t t i n g a u n i t of d a t a between p r o c e s s o r s p and p .

W Y

V X

This f u n c t i o n can t a k e i n t o a c c o u n t (i) t h e
Y

A s imple f u n c t i o n , which

a d i j where XY XY

X Y

3 . 3 . s o l u t i o n

The p recedence tree of t a s k s may be s c h e d u l e d t o minimize

t h e sum of e x e c u t i o n costs, i n t e r p r o c e s s o r communicat ion cos ts ,

p e n a l t i e s f o r n o t mee t ing d e a d l i n e s and costs of s u s p e n d i n g and

resuming t a s k s . The s o l u t i o n t e c h n i q u e s a r e v e r y s i m i l a r t o t h e

11

op t ima l a s s ignmen t approach of s e c t i o n 2 .

F i g . 5 . shows a s c h e d u l i n g g raph t h a t h a s m.n.6 nodes f o r a

problem based on m modules , n p r o c e s s o r s and 6 p h a s e s . T h i s

is a weighted d i r e c t e d g raph (F i g . 5 o m i t s t h e arrow heads on

t h e edges f o r c l a r i t y - t h e r e i s no ambigu i ty o f d i r e c t i o n

s i n c e a l l edges c o n s i s t e n t l y p o i n t away from node s .) T h i s

g raph i s drawn up a c c o r d i n g t o t h e f o l l o w i n g r u l e s .

Node (i , j , k) r e p r e s e n t s t h e e x e c u t i o n o f t a s k i on p r o c e s s o r
j d u r i n g phase k.

Edges j o i n i n g node s t o nodes 1 1 1 , 1 2 1 , 1 1 2 e t c . have w e i g h t s
e

Edges i n c i d e n t on nodes t l , t 2 . . have w e i g h t z e r o .

There i s an edge j o i n i n g node (i , p x @J t o node (j

node i p r e c e d e s node j i n t h e p recedence t ree and i f Idw)/dv

e e t c . 1 1 1 , e 1 2 1 , 1 1 2

i f ‘ P y , @w)

The w e i g h t on t h e edge d e s c r i b e d above i s

t a k e s i n t o a c c o u n t t h e c o s t of e x e c u t i o n , t h e second term
i s t h e , i n t e r p r o c e s s o r and i n t e r p h a s e communication
overhead. The l a s t t e r m r e p r e s e n t - s t h e p e n a l t y f o r n o t
comple t ing t h i s t a s k by t h e end o f t h e p r e v i o u s p h a s e .

The s i m i l a r i t y between t h i s s c h e d u l i n g g r a p h and

t h e ass ignment g raph o f t h e p r e v i o u s s e c t i o n i s obv ious . I n

f a c t t h e s c h e d u l i n g g raph may be c o n s i d e r e d t o be a n a s s i g n m e n t

graph based on m modules and n .6 p r o c e s s o r s . Thus t h e s h o r t e s t

t ree i n t h e s c h e d u l i n g g raph , which would co r re spond t o t h e

op t ima l s c h e d u l e , may be found u s i n g t h e a l g o r i t h m d e s c r i b e d

i n t h e append ix i n O (m n 6) t i m e . 2 2 2

12

4 . C o n c l u s i o n s .
A dynamic programming a l g o r i t h m h a s been p r e s e n t e d

t h a t may be used (1) t o o p t i m a l l y a s s i g n a modular programme

t h a t h a s a t r e e - l i k e s t r u c t u r e o v e r a d i s t r i b u t e d p r o c e s s o r

sys t em and (2) t o o p t i m a l l y s c h e d u l e a set of t a s k s t h a t have

a t r e e - l i k e p r e c e d e n c e r e l a t i o n s h i p o v e r a d i s t r i b u t e d

p r o c e s s o r sys tem i n which costs v a r y w i t h time b u t are c o n s t a n t

over c o n t i g u o u s p e r i o d s c a l l e d p h a s e s .

2 2 For t h e f i r s t c a s e t h e a l g o r i t h m h a s O (m n) t i m e

complex i ty where m i s the number o f modules and n t h e number of

p r o c e s s o r s . We have thus shown t h e unso lved problem o f o p t i m a l l y

a s s i g n i n g a modular prUyLaLI1 vv;c ;;=re tk: th ree L - - v->-n?===f i~e +n hc

s o l v a b l e f o r t h e impor t an t c l a s s o f programs i n which t h e

module i n t e r c o n n e c t i o n s t r u c t u r e i s a t ree .

2 2 2 I n t h e second case t h e a l g o r i t h m h a s O(m n j3 1

complex i ty where j3 is the number of p h a s e s .

5. Acknowledgements

The a u t h o r wishes t o t h a n k P r o f e s s o r Harold S t o n e f o r

h i s u n c e a s i n g encouragement of t h i s r e s e a r c h . Comments of

t h e r e f e r e e s on a n e a r l i e r v e r s i o n of t h i s p a p e r have

s i g n i f i c a n t l y he lped t o r e shape it.

J

13

6. References -
Bokhari (79) S. H. Bokhari, "Dual Processor Scheduling with Dynamic

Reassignment,'' IEEE Trans. Software Eng., vol. SE-5, no.4,
pp. 341-349, July 1979.

Bokhari (EO) S. H. Bokhari, "Optimal Assignments in Dual Processor
Distributed Systems under varying load conditions,"
IEEE Trans. Software Eng., to appear.

Gursky (78) M. Gursky, private communication.

Michel & van Dam (76) J. Michel and A. van Dam, "Experience with
distributed processing on a Host/Satellite Graphics
System," Proceedings of SIGGRAPH '76, available as
Computer Graphics, (SIGGRAPH newsletter), vol. 10, no. 2,
1976.

Stone (77a) H. S. Stone, "Multiprocessor Scheduling with the aid
of Network Flow Algorithms," IEEE Trans. Software Eng.,
vol. SE-3, no. 1, pp. 85-93, Jan 1977.

Stone (77b) H. S. Stone, "Program Assignment iri Three-Processor
Systems' and Tricutset Partitioning of Graphs, " Tech.
Rep. no. ECE-CS-77-7, Dept. Elec & Computer Eng.,
Univ. of Massachusetts, Amherst.

Stone (78) H . S. Stone, "Critical Load Factors in Distributed
Systems," IEEE Trans Software Eng., vol. SE-4, no. 3 ,
pp. 254-258, May 1978.

- CACM, vol. 2 3 , no. 5, pp. 272-277, May 1980.
Turner (30) J. Turner , "The Structure of Modular Programs, 'I

van Dam et al. A. van Dam, G. Stabler& ii Harrington, "Intelligent
Satellites f;or interactive graphics," Proc. of the - IEEE, Lol. 62, no. 4 , pp. 83-92, April 1974.

1 4

6. Appendix: The s h o r t e s t t ree a l g o r i t h m

An a l g o r i t h m t o f i n d t h e s h o r t e s t a s s ignmen t tree

i n an ass ignmen t g raph i s p r e s e n t e d i n t h i s s e c t i o n . A t t h e

h e a r t of t h e a l g o r i t h m i s a p rocedure t h a t w i l l f i n d t h e

s h o r t e s t p a t h s trom a t e r m i n a l node o f t h e a s s ignmen t g r a p h t o

a l l nodes i n t h e n e a r e s t f o r k s e t (F i g . 6) . T h i s may be done

u s i n g dyliamic programming i n O(mn) t i m e (From e a c h node i n a

l a y e r w e l abe l a l l nodes i n t h e p r e c e e d i n g l a y e r - - t h i s t a k e s

O(n) t i m e . T h i s l a b e l l i n g i s r e p e a t e d O (m) t i m e s) . L e t u s

c a l l t h i s p r o c e d u r e SHORT and assume t h a t it leaves p o i n t e r s

from e a c h node t o t h e next node i n t h e s h o r t e s t p a t h t o t h e

t e r m i n a l z s d e .

2

2

W e w i l l c a l l a f o r k s e t "exposed" when t h e s h o r t e s t

p a t h from i t s nodes t o a l l p o s s i b l e t e r m i n a l nodes have been found

J

F i g 6 Shortest paths from tl and t2 t o a l l *
nodes i n t h e forkset.

b e g i n

1 5

i n p u t g r a p h ;

(* TSET is t h e set o f a l l t e r m i n a l nodes *)
(* FSET is t h e set o f a l l f o r k s e t s *)

w h i l e ITSET\ > 1 d o

b e g i n

t o e a c h t e r m i n a l node t i n TSET a p p l y p r o c e d u r e
SHORT and remove t from TSET;

f o r e a c h exposed forkset f i n FSET do

b e g i n

t e m p o r a r i l y d i s c o n n e c t a l l o u t g o i n g e d g e s ;

f; create a pseudo- te rmina l node t

j o i n a l l nodes i n f t o tf w i t h e d g e s t h a t
Weinhtc nnirzl to the qiim of the

s e v e r a l s h o r t e g t p a t h s to the s e v e r a l
d i s c a r d e d t e r m i n a l nodes:

- >-.--

remove f from FSET;

add tf t o TSET;

end ;
end :

f i n d t h e s h o r t e s t p a t h from t h e l a s t t e r m i n a l node t o s;
(* t h e l e n g t h o f t h i s p a t h e q u a l s t h e w e i g h t o f t h e s h o r t e s t tree *)

r e c o n n e c t a l l d i s c o n n e c t e d edges:

traverse g r a p h from s t o a l l t e r m i n a l nodes by f o l l o w i n g
p o i n t e r s set up by procedure short; (* e a c h node encoun te red
is p a r t o f t h e s h o r t e s t tree *)

end.

16

Fig .6 shows an ass ignment g r a p h j u s t a f t e r t h e a p p l i c a t i o n of

p rocedure SHOiiT t o t e r m i n a l nodes tl and t2.

have t e m p o r a r i l y removed t h e t w o l i m b s o f t h e g r a p h and

c r e a t e d a pseudo- te rmina l node to

j o i n i n g to t o a node i n t h e f o r k s e t e q u a l s t h e sum of t h e

s h o r t e s t p a t h s from t h a t node t o tl and t2 from F i g . 6 .

f i n d i n g t h e s h o r t e s t p a t h from s t o to w e r e c o n n e c t t h e t w o

limbs of t h e g raph t o o b t a i n t h e s h o r t e s t tree a s shown i n F i g . 8 .

I n F ig .7 w e

The w e i g h t on t h e edge

A f t e r

T h i s a l g o r i t h m i s a p p l i c a b l e t o a b i t r a r y a s s i g n m e n t

g raphs . Each a p p l i c a t i o n o f p rocedure SHORT t a k e s O(mn 2)

t i m e . The t o t a l number of t i m e s t h i s p r o c e d u r e i s a p p l i e d

c a n n o t exceed m, t h e number o f l a y e r s i n t h e graph . The o v e r a l l

complex i ty o f t h e a l g o r i t h m i s t h u s O (m 2 2 n 1 .

L

z F i g . 7 Transformed graph with shor tes t path
from pseudo terminal node to to s.

S

Fig. 8 The shortest assignment tree.

c

